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Abstract

We presentthe designand implementation of a real-
time, vision-basedlandingalgorithm for an autonomous
helicopter. Thehelicopteris requiredto navigate from an
initial positionto a final positionin a partially known en-
vironmentbasedon GPSandvision, locatea landing tar-
get (a helipadof a known shape)andlandon it. We use
vision for precisetarget detectionand recognition. The
helicopter updates its landing target parameters basedon
vision andusesanon boardbehavior-basedcontroller to
follow a pathto thelandingsite. We present resultsfrom
flight trials in thefield which demonstratethatour detec-
tion, recognition andcontrol algorithms areaccurateand
repeatable.

1 Intr oduction

UnmannedAerial Vehicles are indispensable for vari-
ousapplications wherehumanintervention is impossible,
risky or expensive e.g. hazardousmaterialrecovery, traf-
fic monitoring, disasterrelief support etc. A helicopter is
highlymaneuverableversatileplatform. It cantakeoff and
land vertically, hover in place,perform longitudinal and
lateralflight aswell asdrop andretrieveobjectsfrom oth-
erwiseinaccessibleplaces.But thehigh maneuverability
of helicopterscomesatasignificantcost;they areunstable
anddangerousto fly. This shortcomingcanbe remedied
by an unmannedautonomous helicopter, sinceeliminat-
ing thepilot from the control loop decreasesthechances
of endangeringhumanlife. Also thesizeof thehelicopter
canbe reducedwhich effectively reducesthe costof the
helicopter, while increasingits maneuverability .

For an unmannedhelicopter to successfullyfunction,
autonomouslanding is a crucial capability. The struc-
turednature of landingmakesit suitablefor vision-based
stateestimationandcontrol. Thevision problemthatwe
considerhereis a specialcaseof theego-motion problem
whereall thefeaturepointslie on a planar surface(in this
casethe landingpad) [1]. We presentan algorithm for
vision-basedautonomouslanding of a model helicopter
in anunstructured3D environment. Thehelicopteris re-

quiredto autonomouslylocateandrecognizea helipadof
dimensions 4$5�5 cm x 4$5.5 cm, align with it andlandon it.
We presentresultsbasedon flight data from field tests
which show that the algorithm is able to land the heli-
copteron the helipadrepeatably and accurately. On an
average the algorithm landedthe helicopterto within 40
cm positionaccuracy and to within 687 in orientation as
measuredfrom thecenterof helipad andits principal axis
respectively.

(a) AVATAR (b) AVATAR landingonahe-
lipad

Figure1: AVATAR ( AutonomousVehicleAerialTracking
And Reconnaissance)

Vision-basedrobot control hasbeenanactive topic of
researchin thepastfew years [2, 3, 4]. In [5] a real time
computervisionsystemis presentedfor tracking alanding
target but no autonomouslandingwasreported. In [6, 7]
theautonomous landingproblemwasdecoupledfrom the
problem of vision-basedtracking. [8] discussesa vision-
basedsolutionto safelanding in unstructuredterrain. Sev-
eral vision-basedservoing techniques have beenimple-
mentedfor autonomous control of helicopters [9], but
noneof themhave focusedon the landingproblem [10].
The problem of autonomous landingis particularlydiffi-
cult becausetheinherent instability of thehelicopternear
theground[11]. Also sincethedynamicsof a helicopter
arenon-linearonlyanapproximatemodelof thehelicopter
canbeconstructed[12].

2 The Test-bedand Experimental Task
Our experimentaltest-bedAVATAR (AutonomousVe-

hicle Aerial Tracking And Reconnaissance) [13] is a gas-
powered radio-controlledmodel helicopter fitted with a



PC-104stackaugmentedwith severalsensors(Figure 1).
A Novatel RT-20 DGPSsystemprovidespositional accu-
racy of 20cmCEP(CircularError Probable, i.e. the ra-
diusof a circle, centeredat thetruelocationof a receiver
antenna,thatcontains 9�:<; of theindividualpositionmea-
surementsmadeusingaparticularnavigationalsystem).A
BoeingCMIGTS-II INS unit with threeaxisaccelerome-
tersandthree-axisgyroscopesprovidesthestateinforma-
tion to theon-boardcomputer. Thehelicopter is equipped
with a color CCD cameraandan ultrasonicsonar. The
ground stationis a laptopthat is usedto sendhigh-level
control commandsanddifferentialGPScorrectionsto the
helicopter. Communicationwith thegroundstationis car-
ried via 2.4 Ghz wirelessEthernet and 1.8Ghzwireless
video. Autonomousflight is achieved usinga behavior-
basedcontrol architecture [14]. This is discussedfurther
in Section4.

Theoverall landingstrategy is asfollows. Initially the
helicopter is in search mode. The vision algorithm (de-
scribedbelow) scansfor the landing target. As soonas
it detectsthelanding target thestateestimationalgorithm
sendscommands to the helicoptercontroller. This mode
is calledobject-track mode. Whenthehelicopteris above
the landingtarget the vision-basedcontroller commands
thehelicopter to land. This is calledthe land mode. Fig-
ure 2 shows a flow-chart of the algorithm. Next, we de-
scribethevisionandstateestimationalgorithms.
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Figure2: Thestatetransitiondiagramfor thelanding task

3 Vision Algorithm

The vision algorithm is describedbelow in three
parts; preprocessing,geometric invariant extraction, ob-
ject recognition andstateestimation.

3.1 PREPROCESSING

Thegoalof thisstageis to locateandextractthelanding
target. Figure 3 (a) shows an aerialview of the helipad
usedin ourexperiments.

(a) Thr esholding and Filtering . Thresholding con-
verts the color imageto a binary image. The imageob-
tainedfrom thecamerais noisyandthe framegrabber is

(a) Imagefrom on-board
camera

(b) Thresholded and Fil-
teredImage

(c) Segmented Image (d) Final Image

Figure3: Imageprocessingresults.All imagesaretaken
in-flight from a downward-pointing cameraon the heli-
copter

of low quality, hencewe work with binary imagesto re-
ducethecomputationalcostandincreasetheeffectiveness
of thealgorithm. Theimageis first convertedto gray-scale
by eliminating the hueandsaturationinformationwhile
retainingtheluminance. This is accomplishedby thefol-
lowing equation[15]

=?> :%@A5�B�BDC�EGFH:�@ 9�B�IDC�JGFK:%@A534.4LC�M (1)

whereR,G,Brepresent thered,greenandbluevaluesin
the imagerespectively. The thresholding algorithmmust
produceabinaryimagewhichpreserves thelandingtarget
but effectively removes most of the otherdatafrom the
image.A robustimplementationis to thresholdtheimage
atafixedpercentage( N :�; ) betweentheminimumandthe
maximum graylevels. Figure3(b) shows the imageafter
thresholding. A 7 O 7 Median-filter is appliedto thesubse-
quent imagefor removing noiseandto preserve theedge
detailseffectively. Median-filters have low-passcharac-
teristicsandthey remove additive white noise[15]. They
preserve theedgesharpness[16] in animageandarepar-
ticularly suitablefor therecognition of geometric objects
suchasthehelipad.

(b) Segmentation and Connected Component La-
beling. The imageobtained after thresholding andfilter-
ing mayconsist of objectsotherthanthehelipad. In this
stepthe various regions of interestare identifiedandla-
beled.Theimageis scanned row wiseuntil thefirst pixel
at a boundaryis hit. All thepixelswhich belong to the8-
neighborhoodof thecurrent pixel aremarkedasbelonging
to the current object. This operation is continuedrecur-



sively until all pixelsbelonging to theobjectarecounted.
A productof this processis theareaof theparticularob-
ject in pixels. Objectswhoseareais lessthana particular
threshold ( P N : pixels) arediscarded. Similarly objects
whoseareais QR6(:.: pixels arediscarded.Theremaining
objectsareourROI(regionsof interest)andarecandidates
for thelanding target (Figure 3 (c)).

3.2 INVARIANT MOMENTS

Geometric shapespossessfeatures suchas perimeter,
area,momentsthatcarrysufficientinformationfor thetask
of object recognition. Suchfeaturescanbe usedasob-
ject descriptors, resultingin significantdatacompression,
becausethey canrepresent the geometric shapeby a rel-
atively small featurevectorandareideally suitedfor the
presenttask.Basedof thegeometric featuresof anobject
onecancalculateasetof descriptorswhichareinvariantto
rotation, translationandscaling.Theseshapedescriptors
arewidely usedin opticalcharacterrecognition andpose
estimation.Onesuchclassof descriptors [17] is basedon
themoments of inertiaof anobject. The SUTVFXW�Y�Z\[ order
moment of animage ]^S!_a`cb%Y is given by

dfe�g >ih%jkh(l?m e�n�g ]^S m ` n Y (2)

wheretheindicesi, j correspondto thecoordinateaxesx,
y respectively.

Thecenterof gravity of theobjectis specifiedby

o_ > dqp�rd r�r ob > dsr�pd r+r (3)

Thecentral momentsof anobjectarethemomentsde-
finedabout thecenterof gravity andaregiven by

t e�g > h j h l S mvu o_wY e S n u ob�Y g ]^S m ` n Y (4)

wheretheindicesi, j correspondto thecoordinateaxesx,
y respectively. Thenormalizedcentralmoments,denoted
by x e�g , aredefined as

x e�g > twe�gtyr+r�z (5)

where

{ > T|FKW5 F}4 ]�~���T�FHW > 5%`���`�@�@�@ (6)

Normalizedcentral moments canbeemployed to pro-
ducea set of invariant moments. The threelower-order
invariants � p `�@�@�@�@A�w� aregiven in termsof the secondand
third order central moments [17] by

� p > x�� r FHx r � (7)

� � > S!x � r u x r � Y � F��.x �p�p (8)

�8� > S!x.� r u ��x p � Y � F}S\��x � p u x r ��Y � (9)� p `�@�@�@ �w� are scale,rotation and translationinvariant.
Objecteccentricityis givenby

� >?� tyr �a���.� �y� F t � r ����� � � u tap�p ����� 5 �tyr ���c��� � � F t � r ���.� � � u tap�p ���.� 5 �y� � (10)

Definition: Objectorientation is definedastheangle be-
tweenthemajoraxisof theobjectandthex-axis
It canbederivedby minimizing thefunction� S � Y > h h� j �

l��/�.� � S m�u o_yY ���<� � u S n u ob%Y �c��� � � � (11)

where S m ` n Y belong to � which is the spacerepresenting
theimage.Minimizing

� S � Y gives theobject orientation �
as � > 45���� �"  � � S 5 tap+pt � r u t r � Y (12)

3.3 OBJECT RECOGNITION AND STATE-ESTIMATION

Initial trials with test datashowed that the first, sec-
ondandthird momentsof inertiaweresufficient to distin-
guishbetweenthelandingtarget andotherobjectspresent
in the image(Equations(7),(8),(9)). The algorithm was
calibratedoffline usinga setof imagescollectedin prior
flights. The calibration values storedwerethe meanval-
uesof the moments of inertia. During actualflight the
moments of inertiaof eachframearecalculatedandcom-
paredto the calibration values. If they lie within a toler-
anceof ¡|4�:�; of thestoredvaluesthentheobject(in this
casethehelipad) is saidtoberecognizedandthealgorithm
proceedsto thenext stepof stateestimation.

Thestateestimationalgorithmcalculatesthex-y coor-
dinatesandorientationof thelanding target relative to the
helicopter. The heading is calculatedusingEquation 12,
while thex-y coordinatesof the landing targetarecalcu-
latedusingEquation 3. Thesestateestimatesaresentto
thehelicoptercontroller.

4 Control Ar chitecture

The AVATAR is controlled using a hierarchical
behavior-basedcontrol architecture. Briefly, a behavior-
basedcontroller [18] partitionsthecontrol problem into a
setof looselycoupledbehaviors. Eachbehavior is respon-
siblefor a particular task.Thebehaviors act in parallelto
achieve theoverall goal. Low-level behaviors arerespon-
sible for robot functions requiring quick response while
higher-level behaviors meetlesstime critical needs.The
behavior-basedcontrol architecture usedfor theAVATAR
is shown in Figure4.

At the lowestlevel therobot hasa setof reflex behav-
iors that maintainstability by holding the craft in hover.
Theheadingcontrol behavior attemptsto hold thedesired
heading by usingdatafrom theIMU to actuatethetail ro-
tor. Thealtitudecontrol behavior usesthesonarto control
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Figure4: AVATAR Behavior-BasedController

thecollective andthe throttle. Thepitch androll control
behaviors maintainthe desiredroll and pitch anglesre-
cievedfrom the lateral control behavior. The lateral mo-
tion behavior generatesdesiredpitch androll valuesthat
aregivento thepitch androll control behaviorsto moveto
a desiredposition.At thetop level thenavigation control
behavior inputsadesiredheading to theheading control, a
desiredaltitudeto thealtitudecontrol andadesiredlateral
velocity to the lateral control behavior. A key advantage
of sucha control algorithmis to build complex behaviors
on topof theexisting low level behaviors.

Thelow-level andshort-termgoalbehaviors roll, pitch,
heading, altitude andlateral control behaviors areimple-
mentedwith proportional controllers.

The long-term goal behavior navigation control is re-
sponsiblefor overall taskplanning andexecution. If the
heading error is small, the navigation control behavior
givesdesiredlateralvelocities to the lateral velocitybe-
havior. If the heading error is large, the heading control
behavior is commanded to align the helicopter with the
goalwhile maintaining zerolateralvelocity.

Thealtitudecontrol behavior is furthersplit into three
sub-behaviors, hover control, velocitycontrol and sonar
control. Thehovercontrol sub-behavior is activatedwhen
the helicopter is either flying to a goal or is hovering
over the target. This sub-behavior is usedduring theob-
ject recognition andobject tracking statewhenthe heli-
coptershould move laterally at a constantaltitude. The
hover controller is implemented as a proportional con-
troller. It readsthe desiredGPS location and the cur-
rent location and calculatesthe collective command to
the helicopter. This is shown in Equation13 where ¢
is the collective command sent to the helicopter servos,]^S ��£�¤ Z ` ��£ 7c¥ Y is a function of thecurrent latitudeandlon-
gitude ]^S �.¦+£�¤ Z ` ��¦+£ 7�¥ Y is a function of thedesiredlatitude
andthelongitude, § e is theproportional gain. Thefunc-
tion ] convertsagivenlatitudeandlongitude to thecorre-
sponding distancein metersfrom asurveyedpoint.

¢ > § e S�]^S � ¦+£�¤ Z ` � ¦+£ 7�¥ Y u ]^S � £�¤ Z ` � £ 7�¥ Y�Y
Oncethehelipadhasbeenlocatedandthehelicopteris

alignedwith thehelipadthevelocitycontrol sub-behavior
takesover from thehover control sub-behavior. It is im-
plementedasa PI controller. An integral termis addedto
reduce the steadystateerror. Thehelicopterstartsto de-
scendtill reliablevaluesareobtainedfrom thesonar. The
sonarcontrol sub-behavior takesover at this point until
touchdown. This is also implementedasa PI controller.
Thevelocitycontrol sub-behavior is shown in Equation 14
where ¢ is thecollective commandsentto the helicopter
servos, ¨ is thecurrentvelocity ¨ ¦ is thedesiredvelocity,§ e is theproportional gainand § j is theintegralgain.

¢ > § e S!¨ ¦ u ¨3Y�FK§ j.© S!¨ ¦ u ¨3Y«ª.¬ (14)

Thesonar control sub-behavior is shown in Equation 15,
where ¢ is the collective command to the helicopter ser-
vos, _ is the current position, _ ¦ is the desiredposition,§ e is theproportional gainand § j is theintegralgain.

¢ > § e S!_ ¦ u _wY�FK§ j.© S!_ ¦ u _wYcª�¬ (15)

5 Experimental Resultsand Discussion

Thehelicopteris initially commandedto autonomously
fly towardthehelipadbasedonGPS[search mode]. Once
the helipadis in view , the controller switchesto vision-
basedcontrol [helipad-track mode]. If for any reason
the helicopter losessight of the landing pad, the con-
troller switchesback to search mode. Oncein helipad-
track modethe low-level control behaviors on the heli-
copterreceive commandsfrom thevision controller. The
vision systemsendsorientation, velocity forwardandve-
locity right commandswith respectto the imagecoordi-
nateframeto thehelicoptercontroller. Thecommandsare
thenconvertedinto velocity-northandvelocity-eastcom-
mands basedon the current GPSandheading. The nav-
igational control behavior takestheselateralvelocity and
heading commands andsendsthe appropriatecommands
to thelow-level behaviors for thecontrol of thehelicopter.

Trial Total flight time Landingtime ­ �4 ��:�I s 4�: N s 9�®5 4$9�I s I�� s 4�9�®� �%4�I s 4�4$5 s :.®� ��: N s 4�:�I s � ®9 4�6 N s I.5 s 4$:�®I 4 N I s N 6 s 4$:�®6 4�B�� s I�I s 5�®
Table1: Datafrom Flight Tests

Whenthehelicopteris orientedwith thehelipadit starts
descending [landmode]. At this juncturethehelicopter is



controlled by the velocitycontrol sub-behavior. If it de-
scendsto a heightof � metersor lessthesonarcontrol is
activated. From this point onwards the helicopter’s alti-
tudeis regulatedby sonar, till it lands.

ImageProcessing CPU time
ImageAcquisition ¯k5�:�;

Thresholding andFiltering ¯R4�5.;
Segmentation ¯°�.:�;

ComponentLabeling ¯i6�;
Hu’s Momentsof Inertia ¯?4�:<;

GUI anddisplaying images Pk4.4�;
Table2: ComputationalCostfor ImageProcessingat 10
framespersecond

A total of seventestflights wereconducted. Thedata
obtained areshown in Table1. The final average orien-
tationerror ( ­ � ) is approximately 68® . Thecomputational
costfor imageprocessingis shown in Table2. The time
taken for computing the moments of inertia is only 4�:<;
of the total time. Hence,if the landingtarget hasa well
definedshape,thevisionalgorithm is computationallyin-
expensive. In thefuture we planto testwhetherthesame
resultscouldbeobtained if weimplementedouralgorithm
on noisy data,without filtering. Becauseof the limited
bandwidth from the wirelessvideo transmitterwe were
ableto processonly 10framespersecond.

Total No of Frames 4$5�:.I�:
Landing Padobserved in I.:����

Actual landing Padpresent 9 N �.5
Table3: Errors in theObjectRecognitionAlgorithm

Table3 shows theaccuracy of thealgorithm used.The
datawereobtainedfromapproximately12000framesdur-
ing thesevenflight trials. Eachflight wasof a durationof
approximately 3 minutes. Out a total number of 12060
framesprocessed,the landing pad was presentin 6034
frameswhile it wasdetectedin 5632 frames. The algo-
rithm showed a falsepositive in 202 out of 6034frames
which givesan error rateof �%@ ��I<; . The momentsof in-
ertia areinvariant to rotation, scalingandtranslationbut
varywhentheplanein whichtheimagelies is continually
changing. Thehelicopterpitchesandrolls in flight, which
changestheimageplane;this distortstheimagewhichre-
sultsin falsepositives. In the futurewe plan to integrate
measurementsfrom theIMU with thevision controller to
nullify theeffectscausedby theroll andpitchmotion.

Table4 showstheresultsaveragedoverthesevenflight
trials. We wereable to control the heading of the heli-
copter remarkably well. During the landing phase,the
downwardvelocity is alwaysrestrictedto a maximumof:%@A5 m/sec. This canbe seenfrom Figure5(a). This was
implementedfor asmoothdescenttrajectory, aswell asfor
safetypurposes.Thetrajectoryof thecraftduring descent

for arepresentativetrial is shown in Figure5(c).Although
initially therearesomevariationsin height,thehelicopter
descendssmoothlyduring thelaterpart.For thehelicopter
to finally landit hasto overcomegroundeffectandturbu-
lence. This canbe seenin Figure5(a), whenthe down-
wardvelocity reaches:�@ I meters/second. The difference
betweenthe orientation of the helipadandthe helicopter
for arepresentative trial is shown in Figure5(b). Thecon-
troller is abletomaintaintheorientationof thecraftin-line
with thehelipad.

The averageposition error after landing was �<: cm
from the centerof the helipad. This value is calculated
asthedistancefrom thecenterof thehelipad to thecenter
of the helicopter after landing. This error is small when
comparedto thesizeof thelandingpadandthehelicopter.
Presentlythe camerais staticallymounted below the un-
dercarriageof the helicopter pointing down. Depending
on the height of the craft even a small inclination in the
craft causesa large changein the horizontal distanceon
the ground,makingit difficult to track the landingtarget
precisely. Mounting thecameraon a gimbalwould solve
the problem. Also precisecontrol of the helicopter near
the ground is difficult because of the air-cushion devel-
opedby the downward thrust from the main rotor of the
helicopter.

Meantime to land 6(� s
Meanautonomousflight time 5���� s

Meanerrorin orientation I 7
StandardDeviation in orientation 9w7

Meanerrorin position �.: cm

Table4: Average Resultsfrom Flight Tests

6 Conclusionand Futur eWork

We have presentedthedesignandimplementationof a
real-timevision-basedsystemfor detecting a landingtar-
getanda controller to autonomously landa helicopter on
the target. The vision algorithm is fast,robust andcom-
putationally inexpensive. It relieson theassumptions that
a.) the landingtarget hasa well-defined geometric shape
andb.) all thefeaturepointsof thelanding target arecopla-
nar. Sincewe chosea landing target composedof poly-
gonsandthehelicopterkeepsthecameraroughly perpen-
dicular to the ground, thesetwo assumptionswere justi-
fied.

Data from seven flight trials show that our algorithm
andlandingstrategy worksaccuratelyandrepeatably. The
helicopter achievedautonomouslanding to within �.: cm
positional accuracy and 6%® orientationaccuracy measured
relative to the helipad. In the futurewe plan to integrate
measurementsfrom theIMU with thealgorithmdescribed
hereto nullify theeffectscausedby theroll andpitchmo-
tion thereby improving thedetectionof thelandingtarget.

In thefutureweplanto focusourattentionontheprob-
lem of safeandprecise landing of the helicopter in un-
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Figure5: Performanceof the Vision Algorithm in Con-
junctionwith theLandingController

structured harsh3D environments. The applications of
sucha systemare enormous; from spaceexploration to
target trackingandacquisition.
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